The Complexity of Inferences and Explanations in Probabilistic Logic Programming

نویسندگان

  • Fábio Gagliardi Cozman
  • Denis Deratani Mauá
چکیده

A popular family of probabilistic logic programming languages combines logic programs with independent probabilistic facts. We study the complexity of marginal inference, most probable explanations, and maximum a posteriori calculations for propositional/relational probabilistic logic programs that are acyclic/definite/stratified/normal/ disjunctive. We show that complexity classes Σk and PP Σk (for various values of k) and NP are all reached by such computations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference in Probabilistic Logic Programs Using Lifted Explanations

In this paper, we consider the problem of lifted inference in the context of Prism-like probabilistic logic programming languages. Traditional inference in such languages involves the construction of an explanation graph for the query that treats each instance of a random variable separately. For many programs and queries, we observe that explanations can be summarized into substantially more c...

متن کامل

The Complexity of Bayesian Networks Specified by Propositional and Relational Languages

We examine the complexity of inference in Bayesian networks specified by logical languages. We consider representations that range from fragments of propositional logic to function-free first-order logic with equality; in doing so we cover a variety of plate models and of probabilistic relational models. We study the complexity of inferences when network, query and domain are the input (the inf...

متن کامل

Probabilistic Abductive Logic Programming in Constraint Handling Rules

A class of Probabilistic Abductive Logic Programs (PALPs) is introduced and an implementation is developed in CHR for solving abductive problems, providing minimal explanations with their probabilities. Both all-explanations and most-probable-explanations versions are given. Compared with other probabilistic versions of abductive logic programming, the approach is characterized by higher genera...

متن کامل

Implementing Probabilistic Abductive Logic Programming with Constraint Handling Rules

A class of Probabilistic Abductive Logic Programs (PALPs) is introduced and an implementation is developed in CHR for solving abductive problems, providing minimal explanations with their probabilities. Both all-explanations and most-probable-explanations versions are given. Compared with other probabilistic versions of abductive logic programming, the approach is characterized by higher genera...

متن کامل

Most Probable Explanations for Probabilistic Database Queries (Extended Abstract)

Probabilistic databases (PDBs) have been widely studied in the literature, as they form the foundations of large-scale probabilistic knowledge bases like NELL and Google’s Knowledge Vault. In particular, probabilistic query evaluation has been investigated intensively as a central inference mechanism. However, despite its power, query evaluation alone cannot extract all the relevant information...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017